Search results
Found 2893 matches for
The Oxford Vaccine Group is an independent multi-disciplinary clinical trials and epidemiology group based at the Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford. OVG works towards the goal of developing new and improved vaccines for the prevention of infection in adults and children.
Polymorphism in a lincRNA Associates with a Doubled Risk of Pneumococcal Bacteremia in Kenyan Children.
Bacteremia (bacterial bloodstream infection) is a major cause of illness and death in sub-Saharan Africa but little is known about the role of human genetics in susceptibility. We conducted a genome-wide association study of bacteremia susceptibility in more than 5,000 Kenyan children as part of the Wellcome Trust Case Control Consortium 2 (WTCCC2). Both the blood-culture-proven bacteremia case subjects and healthy infants as controls were recruited from Kilifi, on the east coast of Kenya. Streptococcus pneumoniae is the most common cause of bacteremia in Kilifi and was thus the focus of this study. We identified an association between polymorphisms in a long intergenic non-coding RNA (lincRNA) gene (AC011288.2) and pneumococcal bacteremia and replicated the results in the same population (p combined = 1.69 × 10(-9); OR = 2.47, 95% CI = 1.84-3.31). The susceptibility allele is African specific, derived rather than ancestral, and occurs at low frequency (2.7% in control subjects and 6.4% in case subjects). Our further studies showed AC011288.2 expression only in neutrophils, a cell type that is known to play a major role in pneumococcal clearance. Identification of this novel association will further focus research on the role of lincRNAs in human infectious disease.
Lymphocyte Perturbations in Malawian Children with Severe and Uncomplicated Malaria.
Lymphocytes are implicated in immunity and pathogenesis of severe malaria. Since lymphocyte subsets vary with age, assessment of their contribution to different etiologies can be difficult. We immunophenotyped peripheral blood from Malawian children presenting with cerebral malaria, severe malarial anemia, and uncomplicated malaria (n = 113) and healthy aparasitemic children (n = 42) in Blantyre, Malawi, and investigated lymphocyte subset counts, activation, and memory status. Children with cerebral malaria were older than those with severe malarial anemia. We found panlymphopenia in children presenting with cerebral malaria (median lymphocyte count, 2,100/μl) and uncomplicated malaria (3,700/μl), which was corrected in convalescence and was absent in severe malarial anemia (5,950/μl). Median percentages of activated CD69(+) NK (73%) and γδ T (60%) cells were higher in cerebral malaria than in other malaria types. Median ratios of memory to naive CD4(+) lymphocytes were higher in cerebral malaria than in uncomplicated malaria and low in severe malarial anemia. The polarized lymphocyte subset profiles of different forms of severe malaria are independent of age. In conclusion, among Malawian children cerebral malaria is characterized by lymphocyte activation and increased memory cells, consistent with immune priming. In contrast, there are reduced memory cells and less activation in severe malaria anemia. Further studies are required to understand whether these immunological profiles indicate predisposition of some children to one or another form of severe malaria.
Context-specific regulation of surface and soluble IL7R expression by an autoimmune risk allele.
IL-7 is a key factor in T cell immunity and common variants at IL7R, encoding its receptor, are associated with autoimmune disease susceptibility. IL7R mRNA is induced in stimulated monocytes, yet a function for IL7R in monocyte biology remains unexplored. Here we characterize genetic regulation of IL7R at the protein level in healthy individuals, and find that monocyte surface and soluble IL7R (sIL7R) are markedly induced by lipopolysaccharide. In monocytes, both surface IL7R and sIL7R expression strongly associate with allelic carriage of rs6897932, a disease-associated IL7R polymorphism. Monocytes produce more sIL7R than CD4 + T cells, and the amount is additionally correlated with the expression of DDX39A, encoding a splicing factor. Synovial fluid-derived monocytes from patients with spondyloarthritis are enriched for IL7R+ cells with a unique transcriptional profile that overlaps with IL-7-induced gene sets. Our data thus suggest a previously unappreciated function for monocytes in IL-7 biology and IL7R-associated diseases.
Human genetic and metabolite variation reveals that methylthioadenosine is a prognostic biomarker and an inflammatory regulator in sepsis.
Sepsis is a deleterious inflammatory response to infection with high mortality. Reliable sepsis biomarkers could improve diagnosis, prognosis, and treatment. Integration of human genetics, patient metabolite and cytokine measurements, and testing in a mouse model demonstrate that the methionine salvage pathway is a regulator of sepsis that can accurately predict prognosis in patients. Pathway-based genome-wide association analysis of nontyphoidal Salmonella bacteremia showed a strong enrichment for single-nucleotide polymorphisms near the components of the methionine salvage pathway. Measurement of the pathway's substrate, methylthioadenosine (MTA), in two cohorts of sepsis patients demonstrated increased plasma MTA in nonsurvivors. Plasma MTA was correlated with levels of inflammatory cytokines, indicating that elevated MTA marks a subset of patients with excessive inflammation. A machine-learning model combining MTA and other variables yielded approximately 80% accuracy (area under the curve) in predicting death. Furthermore, mice infected with Salmonella had prolonged survival when MTA was administered before infection, suggesting that manipulating MTA levels could regulate the severity of the inflammatory response. Our results demonstrate how combining genetic data, biomolecule measurements, and animal models can shape our understanding of disease and lead to new biomarkers for patient stratification and potential therapeutic targeting.
The immunology of infection
© 2017 Elsevier Ltd The human immune system is composed of a collection of specialized cells and secreted proteins that allows the identification and removal of an invading pathogen, and in doing so limits host injury or death. This system is composed of innate and adaptive branches. It is important to recognize that although the innate and adaptive branches of the immune system differ fundamentally in their mechanisms of pathogen recognition, neither branch functions in isolation. In this article, we address how the innate and adaptive immune systems sense the presence of a pathogen, how the immune system then coordinates anti-pathogen effector functions to remove the pathogen, and finally how immunological memory functions to better protect its host against subsequent exposure to the same pathogen.
The immunology of infection
The human immune system is composed of a collection of specialized cells and secreted proteins that allows the identification and removal of an invading pathogen, and in doing so limits host injury or death. This system is composed of innate and adaptive branches. It is important to recognize that although the innate and adaptive branches of the immune system differ fundamentally in their mechanisms of pathogen recognition, neither branch functions in isolation. In this article, we address how the innate and adaptive immune systems sense the presence of a pathogen, how the immune system then coordinates anti-pathogen effector functions to remove the pathogen, and how immunological memory functions to better protect its host against subsequent exposure to the same pathogen. Finally we consider how vaccines harness the immune system to induce protective immunity against infection and how controlled human infection models can inform our understanding of the immunology of infection.
Characterization of the genetic determinants of context-specific DNA methylation in primary monocytes.
To better understand inter-individual variation in sensitivity of DNA methylation (DNAm) to immune activity, we characterized effects of inflammatory stimuli on primary monocyte DNAm (n = 190). We find that monocyte DNAm is site-dependently sensitive to lipopolysaccharide (LPS), with LPS-induced demethylation occurring following hydroxymethylation. We identify 7,359 high-confidence immune-modulated CpGs (imCpGs) that differ in genomic localization and transcription factor usage according to whether they represent a gain or loss in DNAm. Demethylated imCpGs are profoundly enriched for enhancers and colocalize to genes enriched for disease associations, especially cancer. DNAm is age associated, and we find that 24-h LPS exposure triggers approximately 6 months of gain in epigenetic age, directly linking epigenetic aging with innate immune activity. By integrating LPS-induced changes in DNAm with genetic variation, we identify 234 imCpGs under local genetic control. Exploring shared causal loci between LPS-induced DNAm responses and human disease traits highlights examples of disease-associated loci that modulate imCpG formation.
Natural Killer cells demonstrate distinct eQTL and transcriptome-wide disease associations, highlighting their role in autoimmunity
AbstractNatural Killer (NK) cells are innate lymphocytes with central roles in immunosurveillance and are implicated in autoimmune pathogenesis. The degree to which regulatory variants affect NK gene expression is poorly understood. We performed expression quantitative trait locus (eQTL) mapping of negatively selected NK cells from a population of healthy Europeans (n=245). We find a significant subset of genes demonstrate eQTL specific to NK cells and these are highly informative of human disease, in particular autoimmunity. An NK cell transcriptome-wide association study (TWAS) across five common autoimmune diseases identified further novel associations at 27 genes. In addition to these cis observations, we find novel master-regulatory regions impacting expression of trans gene networks at regions including 19q13.4, the Killer cell Immunoglobulin-like Receptor (KIR) Region, GNLY and MC1R. Our findings provide new insights into the unique biology of NK cells, demonstrating markedly different eQTL from other immune cells, with implications for disease mechanisms.
Risk of nontyphoidal Salmonella bacteraemia in African children is modified by STAT4.
Nontyphoidal Salmonella (NTS) is a major cause of bacteraemia in Africa. The disease typically affects HIV-infected individuals and young children, causing substantial morbidity and mortality. Here we present a genome-wide association study (180 cases, 2677 controls) and replication analysis of NTS bacteraemia in Kenyan and Malawian children. We identify a locus in STAT4, rs13390936, associated with NTS bacteraemia. rs13390936 is a context-specific expression quantitative trait locus for STAT4 RNA expression, and individuals carrying the NTS-risk genotype demonstrate decreased interferon-γ (IFNγ) production in stimulated natural killer cells, and decreased circulating IFNγ concentrations during acute NTS bacteraemia. The NTS-risk allele at rs13390936 is associated with protection against a range of autoimmune diseases. These data implicate interleukin-12-dependent IFNγ-mediated immunity as a determinant of invasive NTS disease in African children, and highlight the shared genetic architecture of infectious and autoimmune disease.
Genetic susceptibility to invasive Salmonella disease.
Invasive Salmonella disease, in the form of enteric fever and invasive non-typhoidal Salmonella (iNTS) disease, causes substantial morbidity and mortality in children and adults in the developing world. The study of genetic variations in humans and mice that influence susceptibility of the host to Salmonella infection provides important insights into immunity to Salmonella. In this Review, we discuss data that have helped to elucidate the host genetic determinants of human enteric fever and iNTS disease, alongside data from the mouse model of Salmonella infection. Considered together, these studies provide a detailed picture of the immunobiology of human invasive Salmonella disease.
Genetic variants associated with non-typhoidal Salmonella bacteraemia in African children.
BACKGROUND: Non-typhoidal Salmonella (NTS) causes invasive and frequently fatal disease in African children. Existing strategies to prevent, diagnose, and treat NTS disease are inadequate. An improved understanding of the biology of invasive Salmonella infection will facilitate the development of novel NTS control measures. Despite evidence in mice and man showing a clear role for host genetics in NTS susceptibility, there are no published studies investigating host genetic susceptibility to NTS in African populations. METHODS: We conducted a genome-wide association study (SNP Array 6.0, Affymetrix, CA, USA) of NTS bacteraemia in Kenyan children, with replication in Malawian children. We assessed the function of NTS-associated variants in an expression quantitative trait locus (eQTL) dataset of interferon γ (IFNγ) and lipopolysaccharide-stimulated monocytes from 432 healthy European adults. Serum IFNγ (Bio-Plex immunoassay, Bio-Rad Laboratories, CA, USA) in Malawian NTS cases (n=106) during acute disease was correlated with genotype by linear regression. FINDINGS: After whole-genome imputation and quality control, 180 Kenyan cases and 2677 controls were included in an association analysis at 7 951 614 (additive model) and 4 669 537 (genotypic model) loci. After quality control, 143 Malawian cases and 336 controls were included in the replication analysis. An intronic variant in STAT4 was associated (recessive model) with NTS in both Kenyan and Malawian children (Kenya p=5·6 × 10(-9), Malawi p=0·02, combined p=1·4 × 10(-9); odds ratio 7·2, 95% CI 3·8-13·5). The NTS-associated variant was an eQTL for STAT4 expression in IFNγ-stimulated monocytes (p=9·59 × 10(-6)), the NTS risk allele being associated with lower STAT4 expression. In Malawian children with NTS bacteraemia, the same NTS risk allele was associated with lower serum concentrations of IFNγ (p=0·02) at presentation. INTERPRETATION: STAT4 is highly plausible as a susceptibility locus for invasive NTS disease. STAT4 mediates IFNγ release in T cells and natural killer cells in response to interleukin 12 (IL12). Individuals with rare mutations elsewhere in the IL12-IFNγ axis are at risk of disseminated NTS infection. We provide the first evidence, to our knowledge, of a host genetic determinant of NTS disease in African children, and of a STAT4 variant conferring susceptibility to an infectious disease in man. FUNDING: Wellcome Trust.