Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Epidemiological evidence about the etiology and antimicrobial resistance of neonatal infections remains limited in low-resource settings. We aimed to describe the etiology of neonatal infections in a prospective observational cohort study conducted at two hospital sites in Kampala, Uganda. METHODS: Babies admitted to either unit with risk factors or signs of sepsis, pneumonia, or meningitis had a blood culture, nasopharyngeal swab, and lumbar puncture (if indicated) collected. Basic demographics were collected, and babies were followed up until discharge or death to determine admission outcome. Blood cultures were processed using the BACTEC system and identification confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Cerebrospinal fluid was processed using standard microbiological testing and swabs were processed using the multiplex real-time polymerase chain reaction assay. Antimicrobial susceptibilities of bacterial isolates to World Health Organization-recommended first-line antibiotics (ampicillin or benzylpenicillin and gentamicin) were assessed using e-tests. RESULTS: A total of 7323 infants with signs or risk factors for sepsis had blood cultures, 2563 had nasopharyngeal swabs, and 23 had lumbar punctures collected. Eleven percent of blood cultures and 8.6% of swabs were positive. Inpatient mortality was 12.1%, with 27.7% case fatality observed among infants with Gram-negative bloodstream infections. Escherichia coli (14.8%), Acinetobacter spp. (10.3%), and Klebsiella spp. (7.6%), were notable contributors to Gram-negative sepsis, whereas Group B Streptococcus was the predominant Gram-positive pathogen identified (13.5%). Almost 60% of Gram-negative pathogens were ampicillin- and gentamicin-resistant. CONCLUSIONS: Our study demonstrates high levels of antimicrobial resistance and inpatient mortality from neonatal sepsis in the first months of life in Uganda. This underscores the pressing need for revised, context-specific antimicrobial treatment guidelines that account for the evolving landscape of antimicrobial resistance in neonatal sepsis.

Original publication

DOI

10.1093/ofid/ofae629

Type

Journal

Open Forum Infect Dis

Publication Date

12/2024

Volume

11

Pages

S157 - S164

Keywords

antimicrobial resistance, bloodstream infections, neonatal sepsis, respiratory infections, surveillance