Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Dengue is a vector-borne disease caused by the dengue virus (DENV). Despite the crucial role of Aedes mosquitoes in DENV transmission, pure vector indices poorly correlate with human infections. Therefore there is great need for a better understanding of the spatial and temporal scales of DENV transmission between mosquitoes and humans. Here, we have systematically monitored the circulation of DENV in individual Aedes spp. mosquitoes and human patients from Caratinga, a dengue endemic city in the state of Minas Gerais, in Southeast Brazil. From these data, we have developed a novel stochastic point process pattern algorithm to identify the spatial and temporal association between DENV infected mosquitoes and human patients. METHODS: The algorithm comprises of: (i) parameterization of the variogram for the incidence of each DENV serotype in mosquitoes; (ii) identification of the spatial and temporal ranges and variances of DENV incidence in mosquitoes in the proximity of humans infected with dengue; and (iii) analysis of the association between a set of environmental variables and DENV incidence in mosquitoes in the proximity of humans infected with dengue using a spatio-temporal additive, geostatistical linear model. RESULTS: DENV serotypes 1 and 3 were the most common virus serotypes detected in both mosquitoes and humans. Using the data on each virus serotype separately, our spatio-temporal analyses indicated that infected humans were located in areas with the highest DENV incidence in mosquitoes, when incidence is calculated within 2.5-3 km and 50 days (credible interval 30-70 days) before onset of symptoms in humans. These measurements are in agreement with expected distances covered by mosquitoes and humans and the time for virus incubation. Finally, DENV incidence in mosquitoes found in the vicinity of infected humans correlated well with the low wind speed, higher air temperature and northerly winds that were more likely to favor vector survival and dispersal in Caratinga. CONCLUSIONS: We have proposed a new way of modeling bivariate point pattern on the transmission of arthropod-borne pathogens between vector and host when the location of infection in the latter is known. This strategy avoids some of the strong and unrealistic assumptions made by other point-process models. Regarding virus transmission in Caratinga, our model showed a strong and significant association between high DENV incidence in mosquitoes and the onset of symptoms in humans at specific spatial and temporal windows. Together, our results indicate that vector surveillance must be a priority for dengue control. Nevertheless, localized vector control at distances lower than 2.5 km around premises with infected vectors in densely populated areas are not likely to be effective.

Original publication

DOI

10.1186/s13071-018-2662-6

Type

Journal article

Journal

Parasit Vectors

Publication Date

02/02/2018

Volume

11

Keywords

Aedes aegypti, Aedes albopictus, Bivariate point-process, Dengue virus serotypes 1 and 3, Geostatistical additive models, Kriging, Urban dengue, Aedes, Algorithms, Animals, Brazil, Cities, Dengue, Dengue Virus, Female, Humans, Insect Vectors, Male, Models, Statistical, Mosquito Vectors, Retrospective Studies, Serogroup, Spatio-Temporal Analysis, Virus Replication